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4     Introduction 

The goal of this fellowship research project is to improve the temporal and spatial 

resolutions in dynamic contrast-enhanced magnetic resonance imaging (MM) of the 

breast. The motivation for this is that dynamic contrast-enhanced MRI may be able 

to determine non-invasively whether a lesion is benign or malignant based on both the 

temporal enhancement curve in the lesion as well as the spatial pattern of enhancement in 

the tumor (1-11). To capitalize on the time of greatest differentiation between malignant 

and benign lesions, a sequence of images of the breast must be acquired during the first 

1 or 2 minutes following contrast injection (12,13). This leads to a requirement for 

simultaneously high spatial and temporal resolutions. 

However, this is difficult with conventional MRI techniques since the requirements for 

increasing the temporal and spatial resolutions are conflicting. Traditionally, dynamic 

imaging was performed by acquiring a full high-resolution data set for each dynamic 

image. The data acquisition time for such a data set is dependent upon the excitation 

sequence. If the popular Fourier encoding sequence is used, then Nx excitations are 

necessary to acquire the data set if y is the frequency encoding direction and x is the 

phase encoding direction. Then, the total imaging time will be 

T = NXTR (1) 

where TR is the repetition time. Clearly, a straightforward way to shorten the imaging 

time is to reduce Nx. However, with the standard Fourier reconstruction method, the 

spatial resolution of the resulting image is 

Therefore, an improvement in temporal resolution by reducing Nx is accompanied by a 

commensurate loss in spatial resolution. 

To overcome this problem, several reduced scan methods have been proposed which 

use a priori information to reduce the number of dynamic encodings needed per dynamic 

image. These methods are characterized by the data acquisition scheme illustrated in 

Fig. 1 in which a single high-resolution reference data set is acquired, followed by a 

series of reduced dynamic encodings. These methods can be roughly grouped into two 

categories: non-Fourier encoding methods and constrained reconstruction methods. 



The non-Fourier encoding methods, such as the wavelet (14-38) and singular value 

decomposition (SVD) (39-46) methods, use the a priori information during the data 

acquisition step to try to perform an optimal encoding of the dynamic image. By using 

these non-Fourier basis functions, they hope that the image can be well represented with 

fewer encodings, leading to improved temporal resolution. 

On the other hand, the constrained reconstruction techniques use the a priori infor- 

mation during the data acquisition step. Examples of constrained reconstruction tech- 

niques are the Reduced-encoding Imaging by Generalized-series Reconstruction (RIGR) (47, 

48) and Keyhole (49,50) methods. The main difference between the methods is in the 

reconstruction of the dynamic images. In Keyhole, reference data is directly substituted 

for the unmeasured dynamic data prior to Fourier inversion. Although the method has 

been applied to dynamic breast imaging (51,52) due to its simplicity, it can only track 

dynamic changes at low resolution (53,54). In addition, image artifacts can arise due to 

data inconsistency between the reference and dynamic data sets, especially in contrast- 

enhanced imaging since the inflow of the contrast agent causes an increase in the overall 

intensity level as well as the intensity in the enhancing areas. These problems can cause 

improper diagnosis due to missed lesions (55). 

The RIGR method tries to generate the missing dynamic data by using a generalized- 

series model (47,48) 
N/2-1 

Idyn(x) = \Iref(x)\     £    Cn ei2™Ak* (3) 
n=-N/2 

where 7ref is the high-resolution reference image, N is the number of dynamic encod- 

ings, and Ak is the phase encoding step in &-space. The N model parameters cn are 

determined by the constraint that the generated data should be identical to the actual 

measured data ddyn at all sampled fc-space points, which leads to 

N/2-1 

ddyn(m) =   J2   Cn ^ref(m ~ n) -N/2<m< N/2-1 (4) 
n=-N/2 

where 

(5) 

/oo 

\Iiei(x)\e~i2^m-^Akxdx. 
■oo 

Substituting the resulting coefficients into Eq. [3] will yield the desired dynamic image. 

RIGR can reconstruct the dynamic images with a higher spatial resolution than is pos- 
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sible with Keyhole because the basis functions of the generalized series model contain 

high-resolution information from the reference image. This has important ramifications 

for dynamic imaging. 

The purpose of this fellowship research project is to improve the temporal and spatial 

resolution in contrast-enhanced dynamic imaging of the breast. Specifically, we seek to 

use the edge information from the reference data set and the contrast information in the 

dynamic data set to build the generalized-series basis functions for the RIGR method. 

By having dynamic information in the basis functions, as well as in the generalized-series 

coefficients, improved dynamic images should be obtained. 

5     Completed Research 

5.1    Fourier versus Non-Fourier Encoding 

Given that a high-resolution reference image and TV dynamic Fourier encodings are 

available, RIGR is an optimal way to mix the reference and dynamic data sets. However, 

the flexibility of MRI permits a wide variety of encoding schemes, leading one to wonder 

if there is a better way of acquiring the data than with the infinite exponentials used by 

the Fourier encoding method. This is the motivation behind the non-Fourier encoding 

reduced scan methods which include the wavelet and singular value decomposition (SVD) 

encoding methods. Based on signal processing theory, the truncated SVD is the optimal 

representation of the image for a given number of basis functions (encodings) in the least 

mean squared error sense. For this reason, we investigated the SVD encoding concept. 

The SVD encoding method proposed by Cao, et al (39,40) and Zientara, et al (41-46) 

can be characterized by the following steps: 

1. Acquire a high-resolution reference image using conventional Fourier encoding. 

2. Perform the singular value decomposition (SVD) of this reference image as 

Iie{ = UEVH (6) 

where U, £ and V are the matrices containing the left singular vectors uu singular 

values a; and right singular vectors vi} respectively. 



3. Acquire the dynamic data using spatially selective RF pulses. For SVD encoding 

along the vertical or horizontal directions, the U{ or vi} respectively, corresponding 

to the largest N singular values are selected for encoding the dynamic images. For 

the pure vertical encoding case, this can be expressed as 

»->dyn = UN idyn (7) 

where UN is the matrix constructed from the N selected left singular vectors. 

4. Reconstruct the dynamic images using SVD synthesis. This can be expressed 

mathematically as multiplying the dynamic data by UN as 

-^dyn = UN <Sdyn. (&) 

A modification of the basic SVD method known as the SVD-Keyhole method (45) has 

a few additional steps. Specifically, these steps are 

5. Create the eigenimage 

Iret,M-N = UM-N ^M-N VM-N (9) 

where UM-N, %M-N and VM-N are truncated matrices consisting of the M - N 

least significant left singular vectors, singular values and right singular vectors, 

respectively. 

6. Create the SVD-Keyhole image by adding I^M-N to Jdyn given in Eq. [8] such 

that 

-fdyn = UN S'dyn + /ref,M-AT- (10) 

To simulate the RIGR data acquisition, ft-space data sets were generated from a 

sequence of high-resolution images. A baseline high-resolution data set was used as 

the reference data, and the central N phase encodings from the remaining data sets 

were used as the dynamic phase encodings. To simulate the SVD and SVD-Keyhole 

imaging methods, the singular value decomposition of the reference image was calculated 

according to Eq. [6]. The dynamic data were then generated using Eq. [7]. 

Based on our investigation into non-Fourier encoding (56,57), we concluded that 

the current SVD data acquisition scheme biased the results towards reproducing the 



known features in the reference image. An example of this is shown in Fig. 3 which uses 

the contrast-enhanced breast simulation model which was developed for this project 

last year. The dynamic changes include a variable rate of enhancement in each of the 

"lesions" as well as a slow overall background tissue enhancement. Images (a) and (b) 

show the reference and dynamic images, respectively, reconstructed using 128 phase 

encodings with the standard Fourier reconstruction method. Images (c)-(e) show the 

dynamic image reconstructed using 16 dynamic encodings with the SVD, SVD-Keyhole 

and RIGR, respectively. In addition to having fewer artifacts, the RIGR reconstruction 

faithfully reproduces the signal magnitudes in the lesions whereas the SVD methods do 

not. This is quantified in Fig. 4 which shows the average signal magnitudes in each 

of the four lesions as reproduced by the different methods. The SVD methods assign 

nearly the same signal magnitude to each of the lesions whereas the RIGR values are 

very close to the actual values as determined by the high-resolution dynamic image (b). 

The methods were also tested on real MRI data provided by Dr. Erik Wiener from 

a contrast-enhanced dynamic imaging study of a rat with a large breast tumor. A 

high-resolution pre-contrast reference data set was obtained using a spin echo sequence 

(TR300/TE20). A series of full data sets was acquired as the contrast agent was injected 

and as it washed into the tumor. The dynamic data for the RIGR and SVD methods 

were generated as discussed earlier. Figure 5 (a) and (b) are the reference and dynamic 

images, respectively, reconstructed using 256 phase encodings with the standard Fourier 

reconstruction method. Images (c)-(e) show the dynamic image reconstructed with 

32 dynamic encodings using SVD, SVD-Keyhole and RIGR, respectively. The RIGR 

image shows improved reconstruction of the internal details of the tumor, such as those 

indicated by the arrows. 

The SVD methods also had difficulty detecting new features which arose due to 

dynamic changes. This is illustrated in Fig. 6 which shows a needle biopsy simulation. 

Images (a) and (b) are the reference and dynamic images, respectively, reconstructed 

using 256 phase encodings. Images (c)-(e) show the dynamic image reconstructed using 

32 dynamic encodings with SVD, SVD-Keyhole and RIGR, respectively. In the RIGR 

image, since the reference image contains no information about the needle, Gibbs ringing 

results from this new feature. However, this artifact is much less serious than those 

arising from the SVD methods, which result in a wide needle reconstruction which 
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appears displaced from the proper location (indicated by the arrow). This artifact 

is not due to the truncation of the SVD representation but is due to the particular 

encoding vectors selected. To show this, Fig. 7 was reconstructed with the optimal 32 

dynamic encodings as determined from the dynamic image itself. The greatly improved 

reconstruction of the needle attests the non-optimality of the reference encoding for 

representing the dynamic image. 

From a signal processing perspective, the truncated SVD representation yields the 

reconstructed image with the least mean squared error for a given number of encodings. 

By using these singular vectors for encoding, the aim is to do an optimal encoding 

of the dynamic image. If optimal encoding could be achieved, neither RIGR nor any 

other technique could beat it. However, we have shown that the current SVD encoding 

method does not in general produce better images than RIGR. The reason for this is 

that the SVD encodings are optimal only with respect to the reference image and are 

sub-optimal with respect to the dynamic image (39). In fact, because singular vectors 

can be very sensitive to perturbation of a matrix (image) (58), the singular vectors 

derived from the reference image are not just sub-optimal, but they bias the acquisition 

towards reproducing the dominant features of the reference image. As a result, the 

SVD methods have a reduced capability to capture new dynamic features and contrast 

changes in existing image features. For this reason, SVD encoding is not appropriate for 

dynamic imaging applications. 

This research generated a conference talk at the 4th Annual Meeting of the Society 

of Magnetic Resonance (see Appendix A), and a manuscript has been submitted for 

publication in Magnetic Resonance in Medicine (see Appendix C). 

5.2    Two Reference RIGR (TRIGR) 

The Two Reference RIGR (TRIGR) method is motivated by the consideration that, in 

some applications such as contrast-enhanced imaging, the dynamic process can change 

the image appearance such that the reference is not a good constraint for image recon- 

struction. In this case, it is desirable to build information about the dynamic changes 

into the basis functions. Accordingly, we reconstruct an image of the dynamic changes 

rather than the dynamic image itself. An additional benefit of this modification is that 
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the generalized-series parameters need only represent the dynamic changes and not the 

static parts of the image. 

The TRIGR method uses the data acquisition scheme illustrated in Fig. 2. A high- 

resolution baseline reference data set is acquired where the number of phase encodings 

is dictated by the spatial resolution requirements. This is followed by a series of reduced 

dynamic encodings, where the number of encodings is chosen to give the desired temporal 

resolution. At an appropriate time in the experiment, a high-resolution active reference 

data set is acquired. In the case of contrast-enhanced dynamic imaging of the breast, the 

baseline reference would be a high-resolution pre-contrast image. The active reference 

would be a high-resolution post-contrast image, taken after the dynamic imaging period 

when the contrast agent is strongly visible in the slice. 

The dynamic images are reconstructed using the generalized series model as with the 

original RIGR algorithm except that information about the dynamic changes is built into 

the basis functions by using a difference reference image. Specifically, the reconstruction 

steps are: 

1. Construct the difference reference image by subtracting the full active and baseline 

data sets and reconstructing using the traditional Fourier method. 

2. Create the dynamic difference data as 

ddiß(x) = ddyn(k) - dbaseline(k) (11) 

where ddyn(k) is the dynamic data and dhasehne(k) represents the corresponding 

baseline reference encodings. 

3. The TRIGR model is then 
N/2-1 

hm(x) = /ref(x)   Y^   cne
i2™Akx (12) 

n=-N/2 

where 7ref(:r) is the difference reference image of step 1 and N is the number of 

dynamic encodings. The coefficients cn are obtained by enforcing data consistency 

between the reconstructed image and the difference data of Eq. (11), resulting in 

the equation (47) 
N/2-1 

ddis(m) =   ^   cndref(m - n) (13) 
n=-N/2 
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where dief(m — n) is the difference data created by subtracting the baseline and 

active reference data sets. Using these coefficients in Eq. 12 will yield the recon- 

structed dynamic difference image. 

4. Many times, the dynamic changes are the items of interest. However, if the dy- 

namic image itself is desired, it can be generated by adding the complex dynamic 

difference image of step 3 to the baseline reference image, i.e., 

hynix) = /baseline^)     +     idlfffa) (14) 

where /baseline (x) is reconstructed using the standard Fourier technique with the 

full set of encodings. 

The performance of TRIGR has been investigated using additional data sets such 

as the contrast-enhanced dynamic imaging study of a rat with a large breast tumor 

shown in Fig. 8. Data for this study was provided by Dr. Erik Wiener. Images (a) 

and (b) show the reference and dynamic images, respectively, and image (c) is the 

difference between them. This is the image we are trying to reproduce. These three 

images were reconstructed from high-resolution data sets of 256 phase encodings using 

the standard Fourier reconstruction technique. Images (d)-(f) show the difference image 

reconstructed using 8 dynamic encodings with Keyhole, RIGR and TRIGR, respectively. 

In the TRIGR image, note the improved delineation of the internal details of the tumor. 

A manuscript on the TRIGR technique was published in the July 1996 edition of 

Magnetic Resonance in Medicine (see Appendix B). 

5.3    RIGR with Explicit Edge Constraints 

In the original RIGR method, dynamic information is only in the generalized-series co- 

efficients. To improve the reconstruction, it would be desirable to also have dynamic 

information in the generalized-series basis functions which are currently derived solely 

from the reference image. However, we do not want to lose the high-resolution infor- 

mation available in the reference image. Therefore, this research project aims to use 

the edge information from the reference image and the contrast information from the 

dynamic data sets to improve the resulting dynamic images. 
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To do this, there are two areas which need to be addressed: the extraction of the edge 

information and the incorporation of this information along with the dynamic contrast 

information into the generalized-series basis functions. In the first year of this fellowship, 

the multiresolution edge detection method developed by Ahuja et al (59,60) was selected 

for the edge extraction step. However, we had difficulty incorporating this information 

into the generalized-series basis functions. As of the end of the first fellowship year, 

we had tried using a boxcar model to fit the dynamic data to the regions defined by 

the reference image edges. The result was used in several ways to modify the RIGR 

reference image, but no satisfactory method was found. 

During the second fellowship year, we addressed both the fitting step and the in- 

corporation of the resulting information into the reference image. To do this, several 

other models were tested for fitting the dynamic information to the regions defined by 

the selected reference edges. The Haar wavelet and a higher order Daubechies wavelet 

(D20) were tried, but the results were unsatisfactory for different reasons in each case. 

The Haar wavelet fitting maintained the sharp edges of the regions. Unfortunately, the 

truncation artifact of the Haar wavelet basis set resulted in additional sharp edges inside 

the regions which could look like features in a reconstructed image and possibly lead 

to a diagnosis error. The Daubechies wavelet did not have this problem, but the sharp 

edges of the regions were lost. Since the boxcar results of the previous year showed 

promise, but indicated that a higher order model may give better results, the localized 

polynomial approximation (LPA) (61) method was tried which fits a polynomial model 

to each region. 

In addition, the proposed method borrows a strategy from TRIGR and fits the 

difference of the dynamic data and the corresponding encodings of the reference data 

set to the regions defined by the selected reference image edges. The result is a fitted 

image of the dynamic change between the reference and dynamic images. The benefit 

of this is that the LPA fitting need only represent the change in contrast and not the 

static parts of the image. This allows the use of a low order (we used up to quadratic) 

LPA model in the regions. 

In summary, the steps of the proposed method are 

1. Extract the "most important" reference edges using the multiresolution edge de- 
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tection method. 

2. Create the difference data between the dynamic data and the corresponding en- 

codings of the reference data set. 

3. Fit the result of step 2 to the regions defined by the edges selected in step 1 using 

an LPA model. 

4. Add the result of step 3 to the reference image to create a new reference image. 

5. Input the new reference image and the dynamic data into the RIGR algorithm to 

reconstruct the desired dynamic image. 

This method was applied to the breast simulation model. Shown in Fig. 9(a) and 

(b) are the reference and dynamic images, respectively, reconstructed using 128 phase 

encodings. Image (c) is the new reference image created from the fitted dynamic change 

image and the reference image (i.e., the result of step 4 above). Images (d)-(f) show the 

dynamic image reconstructed using the zeropadded Fourier method, the original RIGR, 

and RIGR with edge constraints, respectively. 

Profiles through the upper set of lesions in these images are shown in Fig. 10. Note 

that, with this image and using 32 encodings, the original RIGR method does not 

perform much better than the zeropadded Fourier method. However, the RIGR with 

edge constraints does a much better job at reproducing the lesion profile. 

However, if we look at the profiles through the lower set of lesions in Fig. 11, the 

results from the new technique do not look better than those from the zeropadded 

Fourier method or the original RIGR method. The reason for this is that the reference 

image (a) does not contain any information about these lesions. For this reason, the 

edge detection step cannot extract edges for those lesions, and therefore the fitting step 

cannot reproduce the contrast changes between the reference and dynamic images. This 

suggests that incorporating edge information with the TRIGR method could be even 

more beneficial since the active reference image could be used for the edge extraction 

step (see next section). 

14 



5.4    TRIGR with Explicit Edge Constraints 

The TRIGR technique already has information about the dynamic changes in the basis 

functions. However, perhaps the reconstruction could be improved even further if ad- 

ditional dynamic information were injected using explicit edge constraints. Our initial 

work indicates that the images will be improved by using this additional information. 

To incorporate edge information with TRIGR, the following steps are proposed: 

1. Create a difference*reference image by subtracting the active and baseline reference 

data sets and reconstructing using the standard Fourier reconstruction method. 

2. Extract the "most important" edges from this difference reference image using the 

multiresolution edge detection method. 

3. Create the difference data by subtracting the dynamic data from the corresponding 

encodings of the active reference data. 

4. Fit the result of step 3 to the regions defined by the edges selected in step 2 using 

an LPA model. 

5. Subtract the result of step 4 from the active reference image to create a new active 

reference image. 

6. Input the baseline reference data, the new reference data created in step 5 and the 

dynamic data into the TRIGR algorithm. 

The result of the application of this technique to the contrast-enhanced breast sim- 

ulation is shown in Fig. 12. Images (a) and (b) are the baseline reference and dynamic 

images, respectively, reconstructed using 128 phase encodings. Image (c) is the new 

active reference created by subtracting the fitted LPA image from the original active 

reference image. Images (d)-(f) are the dynamic image reconstructed using 32 encod- 

ings with the zeropadded Fourier method, the original TRIGR method and the TRIGR 

with edge constraints method, respectively. Profiles through the upper and lower set of 

lesions are shown in Figs. 13 and 14, respectively. 
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As expected, the TRIGR with edge constraints method does a better job than the 

RIGR with edge constraints method on the lower set of lesions (compare Fig. 14(f) and 

Fig. 11(f)). However, it is interesting to note that it also performs better on the profile 

through the upper set of lesions. The TRIGR with edge constraints method profile 

(Fig. 13(f)) has less ringing than the corresponding profile from the RIGR with edge 

constraints method (Fig. 10(f)). 

6     Conclusions 

Based on our study of non-Fourier encoding, we concluded that the current SVD encod- 

ing method biases the results towards reproducing the known features in the reference 

image. As such, it has a reduced capability to capture new features or contrast changes 

in existing image structures. Therefore, it is not appropriate for application to dynamic 

imaging. 

We developed a method which uses the edge information from a high-resolution ref- 

erence image and the contrast information from a reduced encoding dynamic data set to 

create the generalized-series basis functions. With RIGR, this improves the reconstruc- 

tion of features which are present in the reference image. However, it cannot help the 

reconstruction of new features which arise during the dynamic imaging period. For this 

reason, edge constraints were incorporated into the TRIGR method since, in that case, 

the active reference could be used for the edge extraction step. The reconstruction of 

new features which arise due to the dynamic process could thus be improved. 

In addition, this fellowship has helped me progress in my academic training. Besides 

the conference presentations and journal papers that have been produced from this 

research project, I recently passed my preliminary examination. If everything goes as 

planned, I should complete the requirements for my Ph.D. by the end of this fellowship 

year. 
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Introduction 
In dynamic MR imaging, a sequence of images of a 

given slice or volume is acquired to monitor a process such 
as the insertion of a biopsy needle. In such an application, 
it is necessary to have high spatial and temporal resolution 
to adequately monitor the process. Three methods which 
have been proposed to improve the temporal resolution 
of a sequence of dynamic images are Reduced-encoding 
Imaging by Generalized-series Reconstruction (RIGR) [1], 
Singular Value Decomposition (SVD) [2], and Keyhole- 
SVD methods (KSVD) [3j. The common thread in these 
methods is the acquisition of a single high-resolution ref- 
erence data set followed by a series of reduced dynamic 
encodings. The differences arise in the choice of the dy- 
namic encodings and the reconstruction procedure for the 
dynamic images. In this paper, the performance of the 
RIGR, KSVD and SVD methods for dynamic MR imag- 
ing is compared using computer simulation. 
Method 

To simulate the RIGR data acquisition, k-space data 
sets, including drer, were generated from a sequence of 
high-resolution images. The central phase encodings were 
used as the dynamic phase encodings, rfjyn,. For the SVD 
methods, the singular value decomposition of the reference 
image was calculated as 

I„(=UT,V" (1) 
where U, £ and V are the matrices containing the left 
singular vectors, singular values and right singular vectors, 
respectively. The left singular vectors u,- corresponding to 
the largest L singular values were selected as excitation 
profiles or eigenencodings for the dynamic images. For a 
dynamic image Iiyn, data were generated by 

Sdyn = UL ■'dyn (2) 
where Uc is the matrix constructed from the L selected 
left singular vectors. For the KSVD method, the reference 
image information was included in the reconstruction as 

Iret.N-L — Ujv_£ %N-L V (3) 
where UN-L and Sjv-z. are truncated matrices consisting 
of the N - L least significant left singular vectors and 
singular values, respectively. The following equations were 
used for image reconstruction: 

SVD: Tdyn = UL Sdyn 

KSVD:     /dyn = UL Sdyn + tf"- 

RIGR: /dyn = /rcf£„C"e'' 

V" 
(4) 

(5) 

(6a) 

where ddyn(m) = 53n
c„ d„r(m - n)     (6b) 

Results and Discussion 
Illustrated in Fig. 1 is a frame from a simulated needle 

biopsy procedure in which the needle motion was parallel 
to the frequency encoding direction. Since the reference 
image contains no information about the needle, the simu- 
lation tests the ability of the methods to discover new fea- 
tures which are the objects of interest in dynamic imaging. 
Figs, l(a-b) show the reference and dynamic images, re- 
spectively, reconstructed with 256 phase encodings using 
the standard Fourier method. Figs, l(c-f) show the dy- 
namic image reproduced with 32 dynamic encodings using 
SVD, KSVD, truncated Fourier transform and RIGR, re- 
spectively. The RIGR images also had less artifacts than 
the SVD and KSVD images when the needle motion was 
perpendicular to the frequency encoding direction. 

In RIGR, the dynamic encodings are not optimized 
with respect to the reference image and are typically col- 
lected at the center of k-space. If the number of dynamic 

encodings collected is small or if the dynamic changes in- 
troduce new edges that are not present in the reference 
image, Gibbs ringing will result from these features as is 
evident in Fig. 1(f). However, RIGR faithfully depicts the 
center of the needle (arrow indicates needle center). This 
is not the case with the SVD images in Figs, l(c-d), in 
which the needle appears displaced from the correct loca- 
tion. With the SVD methods, the "excitation" is biased 
towards reproducing the dominant features in the refer- 
ence image, thus reducing its capability to capture new 
features. Although the selected eigenencodings are opti- 
mal for the reference image, they are not necessarily opti- 
mal, or even good, basis functions for the dynamic images. 

In addition, KSVD suffers from the same data in- 
consistency problem that can occur with regular Keyhole 
which is illustrated here with a contrast-enhanced imag- 
ing simulation. Figures 2(a-b) are the reference and dy- 
namic images, respectively, reconstructed using the stan- 
dard Fourier method with 128 phase encodings. Fig- 
ures 2(c-d) show the dynamic image reconstructed with 8 
dynamic encodings using KSVD and RIGR, respectively. 
Note the artifacts due to data inconsistency between the 
reference and dynamic data in Fig. 2(c). With RIGR, data 
consistency is ensured through the fitting step in Eq. 6b. 

In these simulations, it was assumed that the eigenen- 
codings for the SVD methods could be exactly excited. 
However, this is difficult to achieve in practice, and de- 
viations from ideal excitation degrade the reconstructed 
image [2]. This is not a concern with RIGR since conven- 
tional phase encoding is used. 
Conclusions 

Our study shows that RIGR is superior to SVD in cap- 
turing new features which arise due to contrast enhance- 
ment, functional changes, intervention or other means. 
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MAGNETIC RESONANCE IN  MEDICINE 

Fast Dynamic Imaging Using Two Reference Images 

Jill M. Hanson, Zhi-Pei Liang, Erik C. Wiener, Paul C. Lauterbur 

This paper presents a fast dynamic imaging method which is 
characterized by the acquisition of two high-resolution refer- 
ence images and a sequence of low-resolution dynamic data 
sets. Image reconstruction is accomplished using a general- 
ized series based algorithm. Experimental results demon- 
strate that dynamic images with high temporal resolution can 
be obtained while maintaining excellent spatial resolution. 
This method will be useful for a variety of dynamic imaging 
applications including contrast-enhanced dynamic imaging 
and functional brain studies. 

Key words: dynamic imaging; fast imaging; image reconstruc- 
tion; generalized series. 

INTRODUCTION 

Many MRI applications such as contrast-enhanced dy- 
namic imaging and functional brain studies involve the 
collection of a time series of images of the same slice or 
volume to monitor a dynamic process. To capture the 
details of the dynamic process, it is important to obtain 
high temporal resolution while maintaining high spatial 
resolution. However, with conventional Fourier imaging, 
the requirements for increased time resolution and spa- 
tial resolution are conflicting. Since each of the dynamic 
images is acquired independently, the temporal resolu- 
tion possible is limited by the number of spatial encod- 
ings applied. 

Two methods that have recently been proposed for 
improving the temporal resolution of a sequence of dy- 
namic images are Reduced-encoding Imaging through 
Generalized-series Reconstruction (RIGR) (1-5) and Key- 
hole (6-13). The techniques are similar in that they both 
acquire a single high-resolution reference image with a 
series of reduced dynamic encodings. However, Keyhole 
uses a Fourier transform based approach for the recon- 
struction of the dynamic images. The high frequency data 
from the reference image is simply pasted onto the low- 
resolution dynamic encodings to create a full data set. 
This data set is then inverse Fourier transformed to arrive 
at the dynamic image. Image artifacts can occur as a 

MRM 36:172-175 (1996) 
From the Biomedical Magnetic Resonance Laboratory, Electrical and Com- 
puter Engineering Department (J.M.H., Z-P.L, P.C.L), Beckman Institute 
for Advanced Science and Technology, University of Illinois at Urbana- 
Champaign, Urbana, Illinois. 

Address correspondence to: Paul C. Lauterbur, Ph.D., Biomedical Magnetic 
Resonance Laboratory, University of Illinois at Urbana-Champaign, 1307 
West Park Street, Urbana, IL 61801. 

Received July 13,1995; revised December 11,1995; accepted February 15, 
1996. 

This work was supported in part by Army Grant DAMD17-94-J-4126 (JMH), 
NIH Grant PHS-5-P41-RR05964, NSF-MIP-94-10463-RIA Award, the Na- 
tional Center for Supercomputing Applications, the Beckman Institute, the 
Servants United Foundation, and the Whitaker Foundation. 
The content of this paper does not necessarily reflect the position or the 
policy of the government, and no official endorsement should be inferred. 
0740-3194/96 $3.00 
Copyright © 1996 by Williams & Wilkins 
All rights of reproduction in any form reserved. 

result of data inconsistency between the reference and 
dynamic data sets. In addition, Keyhole can only recon- 
struct a low-resolution version of the dynamic changes 
(14, 15). On the other hand, the RIGR algorithm uses the 
generalized series model to reconstruct the dynamic im- 
ages. Information from the reference image is built into 
the basis functions of the model, which allows it to track 
the dynamic process with greater resolution than is pos- 
sible using Fourier reconstruction techniques with an 
equivalent number of dynamic encodings. This paper 
presents a modified RIGR technique that uses the addi- 
tional information from a second reference image to im- 
prove spatial and temporal resolution in the dynamic 
images. (For a complete description of the original RIGR 
technique, the reader is referred to (4)). 

METHOD 

Compared with the original RIGR method, the proposed 
method is characterized by two distinguishing features: 
(1) the collection of two reference data sets and (2) the 
application of the generalized series model to the differ- 
ence data sets, resulting in direct reconstruction of the 
dynamic signal variations. This method is motivated by 
the consideration that, in many dynamic imaging appli- 
cations, it is possible to obtain two high-resolution refer- 
ence images: one for the "baseline" state and another for 
the "active" state. In the example of contrast-enhanced 
dynamic imaging of breast cancer, where the aim is to 
track the changes that occur in the breast for several 
minutes following the injection of a contrast agent, the 
baseline reference would be a high-resolution precon- 
trast image. The active reference would be a high-resolu- 
tion postcontrast image taken after the dynamic data sets 
when the contrast agent is strongly visible in the image. 

Data acquisition for the proposed method is character- 
ized by the following three steps: 

1. Acquire a high-resolution baseline reference image 
where the number of phase encodings is chosen to 
satisfy the spatial resolution requirements. 

2. Acquire a series of low-resolution dynamic data sets 
where the number of phase encodings per set is 
chosen to give the desired temporal resolution. 

3. Acquire a high-resolution active reference image. 
Note that this image can be acquired in the middle 
of the dynamic encodings if that is better for a given 
application. All that is required is that the active 
reference image indicate the areas of change from 
the baseline reference image. In some situations, it 
may be preferable to obtain reference images at var- 
ious points during the experimental procedure and 
then use the appropriate two reference images for 
each dynamic image. 

Reconstruction of the dynamic images is accomplished 
using the generalized series model with a reference im- 
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age reflecting the areas of change in the sequence of 
images. Specifically, the reconstruction steps are: 

1. Construct the difference reference image by recon- 
structing the baseline and active reference images 
using the traditional Fourier method with the full 
set of encodings and subtracting the complex im- 
ages. 

2. Create the dynamic difference data by subtracting 
from the dynamic data the corresponding encodings 
of the baseline reference image, namely 

ddiffCfr) = ddyn(k) - dbaselineW [l] 

where däyn{k) is the dynamic data and <3baseline(£) 
represents the corresponding part of the baseline 
reference encodings. 

3. The RIGR model then becomes: 

Dorsal. 

Ventral 

Wx) = M*)|    X   cne' fiirnAkx [2] 

where 7ref(x) is the difference reference image of step 
1 and N is the number of dynamic encodings. The 
coefficients cn are obtained by fitting the difference 
data of Eq. [l] to the following equation to maintain 
data consistency (1) 

c?diff(m) =    2   cndn^m - n) [3] 

where dle^m — n) is the difference data created by 
subtracting the baseline and active reference data 
sets. Plugging these coefficients into Eq. [2] will 
yield the reconstructed dynamic difference image. 
If the dynamic image itself is desired, it can be 
generated by adding the complex dynamic differ- 
ence image of Step 3 to the baseline reference image, 

hyn(x) = 4aselii,eM + /diff(x) [4] 

where 4aseimeM is reconstructed using the standard 
Fourier technique with the full set of encodings. 

RESULTS 

The method was tested on contrast-enhanced dynamic 
MR imaging of rats with breast cancer. A rat with a very 
large breast tumor was imaged using a spin echo se- 
quence (TR 300/TE 20). A high-resolution precontrast 
reference image was obtained. The contrast agent was 
then injected, and a series of dynamic images was ac- 
quired. This was followed by a high-resolution postcon- 
trast image. To simulate the reduced encoding acquisi- 
tion strategy used by Keyhole, the original RIGR method 
and the proposed method, the central encodings were 
used for the reconstruction of the dynamic images by 
these methods. 

A line drawing of a representative transverse slice 
through the tumor is shown in Fig. 1. Various anatomical 
features are identified in addition to the tumor. The 
images corresponding to this line drawing are shown in 

Thoracic 
Cavity 

Tumor 

FIG. 1. Line drawing of the transverse rat slice shown in Fig. 2. 

Fig. 2. The precontrast and postcontrast reference images 
that were reconstructed using the standard Fourier 
method with 256 phase encodings are illustrated in Figs. 
2a and 2b, respectively. Image 2c shows the dynamic 
difference image between the dynamic image (not 
shown) and the baseline reference image and was recon- 
structed using 256 phase encodings. Images 2d, 2e, and 
2f show the dynamic difference image reproduced using 
only eight dynamic phase encodings with the Keyhole 
method, the original RIGR method and the two-reference 
RIGR method, respectively. It can be seen that Fig. 2f 
more closely reproduces the dynamic changes than ei- 
ther Figs. 2d or 2e. Note in particular the improved 
delineation of the internal details of the tumor, such as 
those indicated by the arrows. 

DISCUSSION 

The generalized series approach that is employed in the 
proposed method builds information from the reference 
image into the basis functions of the model. The result is 
a high-resolution dynamic image since the basis func- 
tions are high-resolution. In the original RIGR algorithm, 
the basis functions were from either the baseline or the 
active reference image. However, the contrast in these 
reference images may not accurately reflect the dynamic 
changes, which could lead to image artifacts. Given that 
two reference images are available, we can instead build 
information about the dynamic changes into the basis 
functions by using a difference reference image. This 
difference reference image will more closely represent 
the areas of change and will lead to a better reconstruc- 
tion of the dynamic changes. 

Accordingly, we use the proposed algorithm to recon- 
struct an image of the dynamic changes rather than the 
dynamic image itself. (The dynamic image can then be 
obtained by simply overlaying the dynamic change im- 
age on the reference image.) An additional benefit of this 
modification is that the parameters of the generalized 
series model need only represent the dynamic changes, 
not the static parts of the image. This leads to a more 
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FIG. 2. Images of a rat with breast cancer, (a)-(c) Precontrast reference, postcontrast reference and dynamic difference images, 
respectively, reconstructed with 256 phase encodings, (d)-(f) Dynamic difference image reproduced using only eight dynamic phase 
encodings with Keyhole, original RIGR, and two-reference RIGR, respectively. Note in particular the improved delineation of the internal 
details of the tumor, such as those indicated by the arrows. 

faithful representation of the dynamic changes and, thus, 
a better dynamic image. 

These expectations are realized in the experimental 
results that have been obtained. As shown in Fig. 2, the 
image reconstructed using the proposed method (Fig. 2f) 
more closely resembles the desired difference image (Fig. 
2c) than either the Keyhole (Fig. 2d) or the original RIGR 
algorithms (Fig. 2e). Since the proposed method used 
only eight dynamic phase encodings, as opposed to 256, 
this would yield a 32-fold time savings compared with 
standard Fourier imaging with minimal loss of image 
quality. 

One could consider employing a similar methodology 
with Keyhole by appending the high frequency differ- 
ence reference data to the low frequency dynamic differ- 
ence data sets followed by the inverse Fourier transform. 
Although the resulting difference images will be high 
resolution, it is easy to prove that the actual dynamic 
signal changes will still be reconstructed with low reso- 
lution. This behavior is similar to the single reference 
image case analyzed by Spraggins (14) and Hu (15); that 
is, no benefit is gained from the use of two reference 
images in this Keyhole scheme. 

CONCLUSION 

A fast dynamic imaging method that uses two high-res- 
olution reference images and a sequence of reduced dy- 
namic encodings to reconstruct a time series of dynamic 
images has been developed. The proposed method shows 
improved quality of the reconstructed dynamic images as 
compared with both Keyhole and the original RIGR, 
which would lead to a more faithful tracking of the 

dynamic processes. The method would be useful for a 
variety of dynamic imaging applications such as con- 
trast-enhanced dynamic MR imaging and functional 
brain studies. 
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Abstract 
Several constrained imaging methods have recently been proposed for dynamic imag- 

ing applications. This paper compares two of these methods: the Reduced-encoding 

Imaging by Generalized-series Reconstruction (RIGR) and Singular Value Decompo- 

sition (SVD) methods. RIGR utilizes a priori data for optimal image reconstruction 

whereas the SVD method seeks to optimize data acquisition. However, this study shows 

that the existing SVD encoding method tends to bias the data acquisition scheme to- 

wards reproducing the known features in the reference image. This characteristic of the 

SVD encoding method reduces its capability to capture new image features and makes 

it less suitable than RIGR for dynamic imaging applications. 

1    Introduction 

The main challenge with dynamic MRI lies in the requirement of both high tem- 

poral and high spatial resolutions. The two avenues of attack on this problem have 

been fast-scan imaging and reduced-scan imaging. Fast-scan imaging methods seek to 

acquire a full data set in a time that is short relative to the dynamic processes whereas 

reduced-scan imaging methods incorporate a priori information into the imaging pro- 

cess to reduce the number of dynamic encodings required. Some of the better known 

reduced-scan techniques are the Reduced-encoding Imaging by Generalized-series Re- 

construction (RIGR) method (1), the Keyhole method (2,3) and the Singular Value 

Decomposition (SVD) method (4,5). Since the RIGR and Keyhole methods have been 

compared previously (1,6), this paper will focus on a comparison of the RIGR method 
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with the SVD method. A common feature of these methods is that a high-resolution 

reference image is obtained prior to the dynamic imaging period. RIGR uses the ref- 

erence image only to constrain the reconstruction whereas the SVD method uses the 

reference image to determine the dynamic encodings that are acquired. In this paper, 

we present a comprehensive evaluation of the performance of these methods with respect 

to dynamic imaging applications. 

2    Method 

RIGR is a Fourier-encoding method. For each dynamic image, it collects a reduced 

set of phase-encoded data in the central region of fc-space. The unmeasured dynamic 

data are estimated using a generalized series model as  (1) 

N/2-1 

/dyn(s) = |«*)l     E     Cne
i2™Akx [1] 

n=-N/2 

where 7ref is the high-resolution reference image, N is the number of dynamic encodings, 

and Ak is the phase encoding step in /s-space. The JV model parameters cn are deter- 

mined by the constraint that the model-estimated data at all sampled fc-space points 

should be identical to the actual measured data cfayn, which leads to 

N/2-1 

ddyn{m) =      J2     °n <£*("* ~ n) ~ Nl^ <™,< N/2 - 1 [2] 
n=-N/2 

where 

dief(m-n)= \Ire{(x)\e-i2<m-n^Akxdx. [3] 
J — 00 

Substituting the resulting coefficients into Eq. [1] will yield the desired dynamic image. 

The SVD methods use spatially selective RF pulses to acquire a reduced set of 

"SVD-encoded" dynamic data. Unmeasured data are either set to zero (SVD method) 

or filled with the reference data (SVD-Keyhole method). SVD synthesis is then used to 

reconstruct the dynamic image. Specifically, given a reference image 7ref, the singular 

value decomposition of the reference image is first performed as 

iie{ = ui:vH [4] 
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where U, S and V are the matrices containing the left singular vectors uu singular values 

o{ and right singular vectors vu respectively. For SVD encoding along the vertical or 

horizontal directions, the u, or vi} respectively, corresponding to the largest N singular 

values are selected as RF excitation profiles for the dynamic images. In the pure vertical 

encoding case, for example, the dynamic data set generated for each dynamic image is 

the projection of the ideal image 7dyn onto the space spanned by the selected left singular 

vectors. This can be expressed as 

»Sdyn = UN idyn [5] 

where UN is the matrix constructed from the N selected left singular vectors. To recon- 

struct the dynamic images, the dynamic data are multiplied by UN as 

hyn = UM Sdyn- [6] 

Note that if N = M where M is the number of reference encodings, /dyn = 7dyn because 

UN Sdyn = U Sdyn = UUH /dyn. 

A modification of the basic SVD method known as the SVD-Keyhole method (5) 

uses the same data acquisition scheme. The difference lies in the reconstruction step. 

For the SVD-Keyhole method, the eigenimage 

Iref,M-N = UM-N ^M-N VM-N [7] 

is formed where UM-N, ^M-N and VM-N are truncated matrices consisting of the M-N 

least significant left singular vectors, singular values and right singular vectors, respec- 

tively. The final image is obtained by adding /ref,M-jv to /dyn given in Eq. [6] such 

that 

-fdyn = UN Sdyn + Iie{,M-N- [8] 

The methods were compared using computer simulations on both simulated and 

real high-resolution MRI data. The study was tailored to address the following specific 

characteristics: (1) the ability to track contrast changes in existing image structures (as 

calculated by the average signal magnitude in the region of interest) and (2) the ability 
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to reconstruct novel dynamic image features (as indicated by the appearance of the 

image features and artifacts). The simulations were carried out with a fixed number of 

dynamic encodings (i.e., a fixed frame rate) for the RIGR and SVD methods. Note that 

data acquisition for the RIGR method will require the same amount of time per encoding 

as a conventional scan. For the SVD method, the acquisition time per encoding will be 

roughly that of a conventional scan if the dynamic encoding vectors are selected prior 

to the dynamic imaging period. If the dynamic encoding vectors are selected during 

the dynamic imaging period based on the preceeding dynamic image, the acquisition 

time per dynamic image will be increased by the time required to calculate the dynamic 

encodings. In the simulations, we chose to ignore this extra time for the SVD encoding 

method. 

To simulate the RIGR data acquisition, Ä-space data sets were generated from a 

sequence of high-resolution images. A baseline high-resolution data set was used as 

the reference data, and the central N phase encodings from the remaining data sets 

were used as the dynamic phase encodings. To simulate the SVD and SVD-Keyhole 

imaging methods, the singular value decomposition of the reference image was calculated 

according to Eq. [4]. The dynamic data were then generated using Eq. [5]. 

To test the performance of the methods in tracking dynamic contrast changes such 

as those that occur following the injection of a contrast agent, a contrast-enhanced 

simulation was performed in which all the lesions were visible in the reference image. 

The simulation was then repeated using real MRI data from a contrast-enhanced study 

of a rat with breast cancer. To investigate the ability of the methods to reconstruct new 

dynamic image features, two needle biopsy simulations were used in which the needle 

motion was either parallel or perpendicular to the frequency encoding direction. 

3    Results 

Figure 1 shows the results of a simulated contrast-enhanced dynamic imaging study 

in which (a)-(b) are the reference and dynamic images, respectively, reconstructed using 
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128 phase encodings. The dynamic changes include a variable rate of enhancement in 

each of the four lesions as well as a slow overall enhancement in the background tissue. 

Figure 1 (c)-(e) show the dynamic image reconstructed with SVD, SVD-Keyhole and 

RIGR, respectively, using 16 dynamic encodings. The images were compared based on 

the reproduction of the average signal magnitude in the lesions. In addition to having 

fewer artifacts, the RIGR image faithfully reproduces the signal magnitudes in the lesions 

whereas the SVD methods do not. This observation is quantified in Fig. 2 which depicts 

the average signal magnitude in the four lesions. Note that the SVD and SVD-Keyhole 

images have similar signal magnitudes for all four lesions whereas the RIGR image signal 

magnitudes are very close to the actual values in the dynamic image (b). 

The methods were also tested on real MRI data from a contrast-enhanced dynamic 

imaging study of a rat with a large breast tumor. A spin echo sequence (TR300/TE20) 

was used to obtain a high-resolution pre-contrast reference image. The contrast agent 

was then injected, and a series of dynamic images was acquired. The dynamic data 

for the RIGR and SVD methods were generated from the measured data as discussed 

previously. The images were compared based on the reproduction of the spatial features 

in the lesion. Figure 3(a)-(b) show the reference image and a dynamic image from the 

series, respectively, reconstructed using 256 phase encodings. Figure 3(c)-(e) show the 

dynamic image reconstructed using 32 phase encodings with SVD, SVD-Keyhole and 

RIGR, respectively. In the RIGR image, note the improved delineation of the internal 

details of the tumor such as those indicated by the arrows. 

We next investigate the performance of the methods in capturing new features using 

a needle biopsy simulation in which the needle motion is either parallel or perpendicular 

to the frequency encoding direction. The images were compared based on the spatial 

localization of the needle and the appearance of the artifacts. The first case is shown 

in Fig. 4, and the second is shown in Fig. 5. In both of these figures, (a)-(b) are the 

reference and dynamic images, respectively, reconstructed using 256 phase encodings, 

and (c)-(e) show the dynamic image reconstructed with 32 dynamic encodings using 

SVD, SVD-Keyhole and RIGR, respectively. 
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In the parallel case, the SVD methods result in a wide needle reconstruction that 

appears shifted from the correct location as shown in Fig. 4(c)-(d). In the perpendicular 

case of Fig. 5(c)-(d), the artifacts manifest as ringing along the axis of the needle which 

extends across the object in the SVD and SVD-Keyhole images. These artifacts are due 

to the projection of the ideal image onto the space spanned by the selected reference left 

singular vectors which contains no information about the needle. 

The RIGR images are shown in Fig. 4(e) and Fig. 5(e). Since there is no effective 

boundary information for the needle present in the reference image, Gibbs ringing re- 

sulting from this new feature is evident in the images. However, these artifacts are much 

less serious than those arising with the SVD methods. 

4    Discussion 

As discussed in section 2 of this paper, RIGR assumes that a high-resolution reference 

data set and a reduced set of N dynamic encodings are available. RIGR is an optimal 

way to mix the two data sets in the reconstruction step (in the cross-entropy sense). 

The SVD methods also assume that a high-resolution reference image is available. The 

question the SVD methods attempt to address is, given JV excitations, what is the 

optimal way to encode the dynamic image? If optimal truncated encoding could be 

accomplished, then neither RIGR nor any other method could do better. The reason 

that the current SVD methods do not in general produce better images than RIGR is due 

to the fact that the SVD encodings are optimal only with respect to the reference image 

and are sub-optimal with respect to the dynamic image (7). In fact, because singular 

vectors can be very sensitive to perturbation of a matrix (image) (8), the singular vectors 

derived from the reference image are not just sub-optimal, but they bias the acquisition 

towards reproducing the dominant features of the reference image. 

To demonstrate this point, we calculated the dynamic image using the 32 optimal 

SVD encodings derived from the high-resolution dynamic image itself. The result is 

shown in Fig. 6, which is clearly much better than the image in Fig. 4(c) obtained with 
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32 sub-optimal reference SVD encodings. The non-optimality of the SVD encodings can 

be significant for applications in which dynamic signal changes are not small. 

This problem cannot be remedied by using a Keyhole approach. In fact, with SVD- 

Keyhole, additional image artifacts can be introduced due to data inconsistency between 

the reference and dynamic data sets. If the dynamic signal is stronger than the reference 

signal, the artifacts look similar to an SVD truncation artifact. If the reverse is true, 

the artifacts look like a high-pass filtered (in the SVD domain) version of the reference 

image added to the image reconstructed with the low-resolution dynamic data. The 

latter case is illustrated in Fig. 7 in which (a)-(b) show the reference and dynamic 

images, respectively, reconstructed using 128 phase encodings. Figure 7 (c)-(d) show 

the dynamic image reconstructed using 8 dynamic encodings with SVD-Keyhole and 

RIGR, respectively. Note the edge artifacts that appear in the SVD-Keyhole image of 

Fig. 7 (c). 

An important point worth noting is that, in the simulations used in this study, it 

was assumed that the selected encoding profiles for the SVD methods could be exactly 

excited. However, this selective excitation is difficult to achieve in practice, and imperfect 

excitation will degrade the resulting image (5). In addition, Tx weighting will further 

distort the encoded SVD profile when a short TR is used if 7\ is not uniform across the 

image. This is especially a problem when a T\ contrast agent is injected. This is not a 

problem with RIGR since it uses standard phase encoding. 

The RF encoding also limits the application of the SVD methods to single slice or 

3D spin echo imaging due to the RF encoding along the one imaging direction. It is 

also not easy to implement a 2D or thin slab 3D gradient echo sequence for the same 

reason (9). On the other hand, RIGR can be used with any type of sequence. 

5    Conclusion 

This paper presents a comparative study of the performance of the RIGR and SVD 

methods for dynamic imaging applications. Both methods are characterized by the use 
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of a high-resolution reference image to improve imaging speed. However, RIGR uses the 

reference information for optimal image reconstruction whereas the SVD methods seek 

to "optimize" the data acquisition step. Results from this study reveal that, although 

the SVD encodings are indeed optimal with respect to the reference image, the SVD 

data acquisition scheme has a tendency to bias the results towards reproducing the 

known features in the reference image. As a result, the SVD methods have a reduced 

capability to capture new dynamic image features and contrast changes in existing image 

features. These characteristics make the SVD methods less suitable for dynamic imaging 

applications than RIGR. 
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FIG. 1. Contrast-enhanced imaging simulation with all lesions visible in the reference 

image: (a)-(b) Reference and dynamic images, respectively, reconstructed using 128 

phase encodings, (c)-(e) Dynamic image reconstructed with 16 dynamic encodings using 

SVD, SVD-Keyhole and RIGR, respectively. The SVD encoding direction for the SVD 

methods and the phase encoding direction for the RIGR method are vertical. Note the 

improved delineation of the lesions with the RIGR method. 

Region 1 Region 2 Region 3 Region 4 

I (b) Actual Values        M (c) SVD        E (d) KSVD        H (e) RIGR 

FIG. 2. Average signal magnitude of the lesions in Fig. l(b)-(e). Note that the SVD 

methods assign nearly the same average signal magnitude to all four lesions whereas the 

average signal magnitudes in the RIGR image are quite close to the actual values of the 

dynamic image (b). (Regions 1, 2, 3 and 4 correspond to the upper left, upper right, 

lower left and lower right lesions, respectively, in Fig. 1.) 
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FIG. 3. Contrast-enhanced imaging simulation with rat data: (a)-(b) Reference and 

dynamic images, respectively, reconstructed using 256 phase encodings, (c)-(e) Dynamic 

image reconstructed with 32 dynamic encodings using SVD, SVD-Keyhole and RIGR, 

respectively. The SVD encoding direction for the SVD methods and the phase encoding 

direction for the RIGR method are vertical. In the RIGR image, note the improved 

delineation of the internal details of the tumor such as those indicated by the arrows. 

FIG. 4. Needle biopsy simulation with needle motion parallel to frequency encoding 

direction: (a)-(b) Reference and dynamic images, respectively, reconstructed using 256 

phase encodings, (c)-(e) Dynamic image reconstructed with 32 dynamic encodings using 

SVD, SVD-Keyhole and RIGR, respectively. The SVD encoding direction for the SVD 

methods and the phase encoding direction for the RIGR method are horizontal. The 

arrow indicates the center of the needle track. Note the apparent displacement of the 

needle center in the SVD and SVD-Keyhole reconstructions. 
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FIG. 5. Needle biopsy simulation with needle motion perpendicular to frequency encod- 

ing direction: (a)-(b) Reference and dynamic images, respectively, reconstructed using 

256 phase encodings, (c)-(e) Dynamic image reconstructed with 32 dynamic encodings 

using SVD, SVD-Keyhole and RIGR, respectively. The SVD encoding direction for the 

SVD methods and the phase encoding direction for the RIGR method are vertical. Note 

that the ringing artifact which extends across the object in the SVD and SVD-Keyhole 

images is more localized and less intense with the RIGR method. 

FIG. 6. Optimal dynamic SVD encodings: Dynamic image reconstructed with 32 op- 

timal SVD encodings as derived from the dynamic image itself. The SVD encoding 

direction is horizontal. Note the improvement over the image in Fig. 4(c) which was 

reconstructed using the 32 sub-optimal SVD encodings derived from the reference image 

in Fig. 4(a). 
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FIG. 7. Illustration of the data inconsistency problem with SVD-Keyhole: (a)-(b) Refer- 

ence and dynamic images, respectively, reconstructed using 256 phase encodings, (c)-(d) 

Dynamic image reconstructed with 8 phase encodings using SVD-Keyhole and RIGR, 

respectively. The SVD encoding direction for the SVD methods and the phase encoding 

direction for the RIGR method are horizontal. Note the data inconsistency artifacts 

in the SVD-Keyhole image which are equivalent to a high-pass filtered (in the SVD 

domain) version of the reference image. 
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10     Appendix D - Acronyms 

BMRL - Biomedical Magnetic Resonance Laboratory 

LPA - Localized Polynomial Approximation 

MR - Magnetic Resonance 

MRI - Magnetic Resonance Imaging 

RIGR - Reduced-encoding Imaging by Generalized-series Reconstruction 

RSNA - Radiological Society of North America 

SMR - Society of Magnetic Resonance 

SMRI - Society of Magnetic Resonance Imaging 

SMRM - Society of Magnetic Resonance in Medicine 

SVD - Singular Value Decomposition 

TRIGR - Two reference Reduced-encoding Imaging by Generalized-series Reconstruction 
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• • 

Dynamic data 

Reference data 

Figure 1: Reduced scan data acquisition scheme: a single high-resolution reference data 
set is acquired followed by a series of reduced dynamic encodings. 

• • • 

Dynamic data 

Reference 1 data Reference 2 data 

Figure 2: TRIGR data acquisition scheme: two high-resolution reference images, one 
each for the baseline and active states, and a series of reduced dynamic encodings. 
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Figure 3: Contrast-enhanced imaging simulation with all lesions visible in the reference 
image: (a)-(b) Reference and dynamic images, respectively, reconstructed using 128 
phase encodings, (c)-(e) Dynamic image reconstructed with 16 dynamic encodings using 
SVD, SVD-Keyhole and RIGR, respectively. Note the improved delineation of the lesions 
with the RIGR method. 
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Figure 4: Average signal magnitude of the lesions in Fig. 3(b)-(e). Note that the SVD 
methods assign nearly the same average signal magnitude to all four lesions whereas the 
average signal magnitudes in the RIGR image are quite close to the actual values of the 
dynamic image (b). (Regions 1, 2, 3 and 4 correspond to the upper left, upper right, 
lower left and lower right lesions, respectively, in Fig. 3.) 
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Figure 5: Contrast-enhanced imaging simulation with rat data: (a)-(b) Reference and 
dynamic images, respectively, reconstructed using 256 phase encodings, (c)-(e) Dynamic 
image reconstructed with 32 dynamic encodings using SVD, SVD-Keyhole and RIGR, 
respectively. In the RIGR image, note the improved delineation of the internal details 
of the tumor such as those indicated by the arrows. 

[i It Ii Ii It 1 
Figure 6: Needle biopsy simulation with needle motion parallel to frequency encoding 
direction: (a)-(b) Reference and dynamic images, respectively, reconstructed using 256 
phase encodings, (c)-(e) Dynamic image reconstructed with 32 dynamic encodings using 
SVD, SVD-Keyhole and RIGR, respectively. The arrow indicates the center of the needle 
track. Note the apparent displacement of the needle center in the SVD and SVD-Keyhole 
reconstructions. 

EJ 
Figure 7: Optimal dynamic SVD encodings: Dynamic image reconstructed with 32 
optimal SVD encodings as derived from the dynamic image itself. Note the improvement 
over the image in Fig. 6(c) which was reconstructed using the 32 sub-optimal SVD 
encodings derived from the reference image in Fig. 6(a). 
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Figure 8: TRIGR results on data from a rat with breast cancer: (a)-(c) pre-contrast 
reference, post-contrast reference and dynamic change image (difference between a dy- 
namic image (not shown) and the pre-contrast reference image), respectively, recon- 
structed with 256 phase encodings, (d)-(f) dynamic change image reproduced using 
only 8 dynamic phase encodings with Keyhole, original RIGR and two-reference RIGR, 
respectively. 

Figure 9: RIGR with Explicit Edge Constraints: (a) and (b) are the reference and 
dynamic images, respectively, reconstructed using 128 phase encodings, (c) is the new 
reference created using the fitted dynamic change image and the reference image, (d)-(f) 
show the dynamic image reconstructed with 32 dynamic encodings using the truncated 
Fourier method, original RIGR and RIGR with edge constraints, respectively. 
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Figure 10: Profiles through the upper set of lesions in Fig. 9. 

Figure 11: Profiles through the lower set of lesions in Fig. 9. 
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Figure 12: TRIGR with Explicit Edge Constraints: (a) and (b) are the reference and 
dynamic images, respectively, reconstructed using 128 phase encodings, (c) is the new 
reference created using the fitted dynamic change image and the reference image, (d)-(f) 
show the dynamic image reconstructed using 32 dynamic encodings with the truncated 
Fourier method, original TRIGR and TRIGR with edge constraints, respectively. 

Figure 13: Profiles through the upper set of lesions in Fig. 12. 
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Figure 14: Profiles through the lower set of lesions in Fig. 12. 
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